
Defeating Pass-the-Hash

Separation of Powers

Baris Saydag, Microsoft

Seth Moore, Microsoft

Abstract
Pass-the-Hash is but one of a family of credential-theft techniques attackers use in order to impersonate users.

Once credentials are obtained, attackers use them to infiltrate and take over entire networks. One source of

credentials is the operating system itself, as it provides single sign-on behavior for the user. In this paper, we

present a technique for defeating theft of single sign-on credentials.

Credential Theft
Stealing credentials and reusing them is a common technique used to infiltrate computer networks. Pass-the-

Hash, often shortened as PtH, is one of many well-understood avenues to steal credentials. With PtH, password

hashes are stolen from OS memory and reused. Other, similar techniques are Pass-the-Pass and Pass-the-Ticket,

in which case passwords and Kerberos tickets, respectively, are replayed.

These attacks are all made possible by a feature of the operating system called single sign-on, or SSO. With

SSO, the computer system itself caches data in order to act on behalf of the signed-on user without

challenging the user again for authentication. Since the data used for SSO is in RAM, an attacker who may

read that RAM is able to read, and replay, the data.

Once an attacker has credentials for one user, the next stage begins which is lateral traversal. Lateral traversal

means movement across a network between systems as the same user identity. The movement is considered

lateral, as the attacker has not gained any new, elevated privileges yet. However, the attacker can read the

memory on any system which their stolen user identity has administrative privileges. Attackers will then harvest

more credentials from these systems, and repeat the process until they gain higher privileges. Given time and

persistence, an attacker can often move deeply into a network and gain highly-privileged accounts.

One possible solution to stopping this problem is to simply disable SSO. This solution is viewed as not feasible as

users can still be tricked into authenticating, legacy protocols still have credential-equivalent artifacts, and it’s

a poor user experience.

Another solution, which is implemented in Windows 10, is a feature called Credential Guard. It blocks

administrator-level attackers from reading the memory which contains credentials. Credential Guard itself is

built atop a new architecture which defines a mechanism by which secrets can truly be kept hidden from all

users, even those with system privileges.

Keeping Secrets
Introduction
Once upon a time, an emperor told his army to get ready for a big military campaign, but he didn’t share the

target country even with his generals because he feared information leakage. One of his generals insisted on

knowing the destination, and told him that he can trust him. Emperor asked him if he knows how to keep a

secret. When the general got excited and said “yes”, emperor said, “So do I”.

Keeping secrets is easy, because nothing needs to be done, you just keep quiet. Of course, just keeping secrets

is not a goal. In the above story, of course, emperor would have preferred to be able to share the name of the

target country so that his army can prepare better. We want to be able to share the secrets constructively

without a fear of information leakage.

Need for separation of powers
Ensuring an environment of trust, which is also free of abuse starts with distribution of powers. Modern

governments achieve this by separating powers. Simply,

 Legislative branch passes the laws

 Executive branch carries out the tasks, enforces laws

 Judicial branch, arguably the biggest differentiator of modern times, makes sure that everyone obeys

the constitution, even the legislative branch.

It is reasonable to think of a modern OS as a modern government.

• Administrators  The Legislative Power, decides who can run what, and to what degree.

• Kernel / System Services / Drivers  Executive Power, carries out the requests of user mode apps, which

was decided by admins.

• Trusted Computing Base (TCB)  Judicial Power, makes sure everyone obeys the constitution, even the

administrators.

A secure OS design necessitates a separation between these.

Admins are human and humans err. Data shows: > 90% of Windows users run as some sort of administrator.

Admin being the ultimate power would mean a total loss of system when a malicious attachment is run by the

administrator. Furthermore, we can’t simply assume that administrators are always trusted; what if the

administrator is malicious? Administrators should not have total control on the machine. Good examples are

games: we want to prevent piracy and cheating. Another example is multi-tenant scenarios. An administrator is

not necessarily the only administrator on an OS image. One OS image is not necessarily the only compute

domain on a physical machine with VMs.

We can’t simply trust the kernel, either. Because of thousands of system calls and IOCTLs, kernel has a very big

attack surface. Furthermore, the diverse ecosystem of many 3rd party drivers with different quality assurance

standards makes the security inconsistent.

Past solutions
Microsoft has attempted solving this problem in the past. Authenticode / Kernel Mode Code Signing (KMCS) is

designed to put reputation of an authenticated identity on the line. The goal is negatively impacting exploit

economics by increasing cost and traceability. The big problem is that strong verification of publishers by CAs is

questionable at best and recalls are hard and slow.

Another mechanism is “Protected Process” (PP) / “Protected Process Light” (PPL) that were introduced in

Windows Vista. These technologies isolate sensitive user mode processes from others (including administrators)

by preventing injection of threads, memory access and debugging. Since these processes are not protected

from kernel, and since kernel cannot be trusted, this mitigation is not enough.

Finally, patch-guard is designed to protect kernel by limiting what kernel mode code can do. However, parts of

it are heuristic-based and therefore not failsafe.

All these technologies are good for what they are, but they all have an inherent limitation: They are all software

based. Ideally, we want to root security on HW.

HW protections
Historically, Intel architecture systems used “rings” to protect various levels of OS. Ring 0 commanded the entire

physical address space, therefore it commanded the entire machine. This confused the protection between

kernel (because kernel runs in Ring 0) and TCB (because ring 0, therefore kernel, can access all memory).

With the introduction of Hypervisor, a new abstraction layer was introduced. Hypervisor didn’t rely on rings, it

had its own privileged CPU instructions. But since it brings restrictions to what ring 0 can do, and therefore it is

below ring 0, it is nicknamed “ring -1”. Hypervisor is consequently protected from kernel and ring 0. Also,

hypervisor is small compared to rest of the system, therefore easier to test and verify. And as mentioned above,

it roots its security on HW. Therefore, we can consider hypervisor as true TCB.

Hypervisor would be a good place to keep and process secrets, but that would make it bigger and more

complex, which is detrimental to its security. It is clear that there is a need for hypervisor kind of isolation without

cluttering hypervisor.

Virtual Trust Levels - VTLs
Windows 10 introduces a new concept called Virtual Trust Levels. Historically, access layers grew vertically. VTLs

allow growing horizontally. Here is the legacy architecture:

Here is the architecture with VTLs:

Above, regular Windows, now called “Normal World” runs in VTL0. This is mostly business as usual. A new,

“secure world” runs in VTL1, which is only selectively accessible to VTL 0. It is important to note that access

restrictions between VTL1 and VTL0 is enforced even if VTL0 happens to be running in ring 0.

Such horizontal expansion was achieved utilizing Second Level Address Translation (SLAT) technologies that

recently became available in modern CPUs. This virtualization based technology allows a very efficient

mapping between guest virtual, guest physical and system physical pages. Therefore, sections of memory can

be efficiently access protected and isolated from each other. Access configuration is done by Hypervisor (and

as delegated to VTL1), hence making VTL 1 less accessible than VTL 0.

Here is normal world and secure world side by side:

Here are a few important aspects to note:

 User mode applications are called “trustlets” in the secure user mode.

 Since VTL1 is mostly (not entirely, because VTL1 deliberately shares some data with VTL0 as needed)

inaccessible to VTL0, all communication happens only through supported secure channels. User mode

trustlets talk to their counterparts using RPC. Normal and Secure Kernel modes talk to their counterparts

through a specific system call channel.

 Since VTL1 doesn’t trust VTL 0, both channels (RPC and system call) are hardened against a possibly

rogue VTL0.

Properties of Secure World
Secure world is invisible. There is no user interaction or UI. Since this technology is planned to be deployed to

both servers and workstations, performance was a key concern. Several optimizations both in SW and HW

made a low performance impact possible. Virtualization based security has minimal impact on perf, typically

less than 5%.

Secure world has much tighter control to ensure proper testing and verification. No 3rd party code will be

allowed in the secure kernel. Furthermore, trustlets are isolated from each other, ensuring that a compromised

trustlet doesn’t automatically compromise the rest of the system. Finally, trustlets are limited in number and they

are all purpose built – therefore they are much smaller and easier to protect.

World is small... Secure world is smaller. If secure mode is not available, a trustlet can run as a normal mode

process, ensuring code reuse, therefore code reduction. Secure world relies on enlightened normal world /

NTOS for many things such as scheduling, most of memory management and synchronization. Secure kernel

only does the bare minimum, such as configuring SLAT as applicable and encrypting pages before being

paged out (normal kernel still has all the logic for paging out, which allows for code reduction, encryption

ensures secrecy).

Prior Windows State of the Art
The state of Windows credentials in memory, up until Windows 10, is best described by the following Figure 1,

which demonstrates the basic architecture. In this diagram, Alice’s laptop is shown with the Windows security

subsystem, LSASS, hosting authentications protocols. In this case, the most interesting protocols are highlighted:

NTLM and Kerberos. These are the primary protocols used for Windows Active Directory authentication.

As illustrated in Figure 1, an admin-level attacker may read all the memory. The attacker may also read Alice’s

password, as it is entered into memory on logon. With any of these items, the attacker may impersonate the

user on the network, gaining access to resources. With Credential Guard, these credentials may be better

protected, preventing an admin-level attacker from stealing them. Credentials, and equivalent artifacts, are

also shown in Figure 1. The primary credentials targeted are typically the user’s password, the NTOWF, or the

TGT key.

Alice’s Laptop

Local Security Authority (LSASS)

NTLM

Kerberos

NTOWF: C9DF4E56A2…

Ticket Granting

Ticket Key

Service

Ticket
Service

Ticket
Service

Ticket
Service

Ticket Key

Password

FIGURE 1

Password
The password is the primary credential entered by the user to authenticate themselves. An attacker who

harvests this may impersonate the user in many contexts and via virtually any protocol. This makes the password

one of the highest-value credentials that may be stolen.

NTOWF
An abbreviation of “Windows NT One Way Function”, the NTOWF is the MD4 hash of the user’s password. The

NTOWF is used to authenticate users via the Windows NT LAN Manager protocol, often abbreviated as NTLM.

Though an old protocol, NTLM is used heavily in legacy applications and hardware.

TGT Key
The Ticket-Granting-Ticket, abbreviated TGT, is an artifact of Kerberos authentication. When a user

authenticates to a Windows domain, the Kerberos protocol is used. After authentication, the domain provides

the user’s system a TGT along with a corresponding key. An attacker who is able to harvest both the TGT and

TGT key is able to impersonate the user in the context of Kerberos authentication.

Strengthening Primary Credentials
The first step required to prevent credential theft is to move to stronger credentials. A weak credentials is

defined as one which is easily stolen and reused. A stronger credential is one that is resistant to theft, and may

not simply be taken and reused on its own.

Examples of credential strengthening are the use of key-based authenticators or multi-factor authentication.

One such strong credential is a smart card which is unlocked with a PIN. An attacker may steal a user’s PIN, but

it is not possible to steal the key contained within the smart card. This means there is nothing for the attacker to

pass to another system in order to laterally traverse the network.

Multi-factor authentication is a different sort of credential strengthening. Instead of fundamentally changing

the primary credential it is augmented with a second factor, such as a code generator. This mitigates

credential theft, as the attacker must steal more than one piece of information in order to impersonate the

user.

In order to provide any guarantees of credential secrecy, users must use strong credentials. Weak ones, such as

passwords, are so easily stolen that an attacker may bypass any mitigations and impersonate the user with their

primary credential.

Windows Legacy Compatibility
Even with strong credentials, there are credential-equivalent artifacts on the system which may be stolen. These

are first shown in Figure 1: the NTOWF and TGT Key. Figure 2 demonstrates how these artifacts are obtained by

the system.

PIN

File
Server

KDC

FIGURE 2

In the first phase, Alice presents her proof of smart card position via an authenticator. This is accepted by the

Key Distribution Center, or KDC, who is the authenticating party. The KDC returns the TGT plus key. Later, Alice

uses her TGT to get a ticket for accessing a file share. At this point, Alice has a ticket she may use to access the

file server.

In addition to the service ticket for accessing the file server, the KDC also returns an NTOWF for legacy NTLM

support. This is required to access resources when the user doesn’t know their password.

In this authentication flow, Alice’s initial authentication is safe, as an attacker may not steal the smart card key.

However, the attacker may steal the TGT Key or NTOWF out of system memory. This is where the new feature,

Credential Guard, comes into play. It ensure in-memory credentials and equivalents are unreadable by any

user.

Credential Guard

Design
The solution to credential theft, in Windows 10, is a new authentication component called Credential Guard.

With Credential Guard, a new, isolated process is the only process on the system allowed to use the clear

credentials. These credentials are never revealed to memory an attacker may read. Credential Guard is

predominantly stateless, and thus most secrets are encrypted so that they may be managed by the Normal

User mode LSASS process.

The bulk of protocol logic remains within LSASS, while Credential Guard provides only the required processing

for the protocols to use their secrets. Examples of such operations are generation of response messages or

proof-of-possession of keys. In these cases, LSASS gives the encrypted secret to Credential Guard and receives

the output of the operation. This division of effort is depicted in Figure 3.

Normal User

Hypervisor

Secure User (IUM)

LSASS

Protocol Encrypted
secrets

Cred Guard

Protocol
support

Clear
secrets

FIGURE 3

PIN

LSASS

NTLM

Kerberos

TGT TGT Key

NTOWF: C9DF4E56…

Cred Guard

NTLM Support

Kerberos Support

TGT Key

NTOWF: C9DF4E56…

FIGURE 4

The specific credentials which are protected is shown in Figure 4. Here, it is illustrated that Credential Guard

hosts the NTOWF and TGT. They no longer exist in LSASS memory, even in a transient state. These credentials are

thus protected from attacks which read LSASS memory.

Binding Users to Systems
With Credential Guard and strong primary credentials, Alice’s identity is strongly protected. Attackers have no

access to data that can be stolen and used for lateral traversal. However, there’s nothing preventing a

determined attacker from turning off Credential Guard. There’s also nothing preventing an attacker from

keylogging Alice’s PIN and using the smart card. In order to protect against these attacks, a Windows Server

2012 R2 feature, called Authentication Policies, is required.

Authentication Policies allow designating which systems a user may authenticate from. The KDC enforces this

binding by requiring a cryptographic proof in the form of an “armor key”. This armor is defined as part of RFC

6113: A Generalized Framework for Kerberos Pre-Authentication.

When a user authenticates from a system using armoring, the user’s credential is combined with the machine

credential, forming a sort of proof-of-origin key. Only with this proof-of-origin can the reply from the KDC be

decrypted. This results in a chain of identification, starting with the machine’s credential and ending with the

user TGT Key, illustrated in Figure 5.

Cred Guard

Kerberos Support
Machine ID

Key

Machine

TGT Key

Origin

Proof Key

User

TGT Key

PIN

FIGURE 5

So long as the machine’s identity key is strongly protected by Credential Guard, the attacker may not disrupt

this chain of identification and gain any passable data from the user’s session. The attacker may not steal the

primary smart card key, the machine identity key, or any derived keys from it. They all reside inside of Credential

Guard.

The Path to Secured Users
Windows 10 provides strong mitigations against the theft of credentials and credential equivalents. Users with

compliant hardware, Credential Guard, strong authenticators, and a well-defined authentication policy can

be certain that even the most highly privileged malware is unable to steal credentials. These protections form a

strong, first-line defense against attackers looking for a credentials to being infiltrating other systems.

